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� An elementary row operation on a given matrix is an algebraic 
manipulation of the matrix that corresponds to one of the 
following
� 1. Interchanging any two rows of the matrix

� 2. Multiplying one of its rows by a real nonzero number. 

� 3. Adding a scalar multiple of one row to another row. 

� An elementary row operation on a matrix is equivalent to 
premultiplying the matrix by a corresponding elementary 
matrix. 

� Definition 16.1: We call     an elementary matrix of the first 
kind if      is obtained from the identity matrix     by 
interchanging any two of its row. Note that 
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� Definition 16.2: We call     an elementary matrix of the second 
kind if      is obtained from the identity matrix     by 
multiplying one of its rows by a real number  

� Definition 16.3: We call     an elementary matrix of the third 
kind if      is obtained from the identity matrix     by adding 

times one row to another row of    . 

� Definition 16.4: An elementary row operation on a given 
matrix is a premultiplication of the given matrix by a 
corresponding elementary matrix of the respective kind. 
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� Because elementary matrices are invertible, we can define the 
corresponding inverse elementary row operations. Consider a 
system of     linear equations in      unknowns               with 
right-hand sides             . In matrix form this system may be 
written as             , where 

� If     is invertible, then                . We now show that         can 
be computed effectively using elementary row operations. 
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� Theorem 16.1: Let                 be a given matrix. Then,      is 
nonsingular (invertible) if and only if there exist elementary 
matrices                      such that 

� We first form an augmented matrix          , and then apply 
elementary row operations so that      is transformed into    ; 
that is, we obtain 

It then follows that 
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� Let                             , thus 
and hence, 

� For an augmented matrix         . Then, perform a sequence of 
row elementary operations on this augmented matrix until we 
obtain        . From the above we have that if     is a solution to 

, then it is also a solution to                  , where 
represents a sequence of elementary row 

operations. Because              , and            , it follows that 
is the solution to            ,                 invertible. 
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� Suppose now that                 where           , and                      . 
Then,      is not a square matrix. Clearly, in this case the system 
of equations             has infinitely many solutions. Without loss 
of generality, we can assume that the first      columns of      are 
linearly independent. Then, if we perform a sequence of 
elementary row operations on the augmented matrix          as 
before, we obtain             , where      is an                    matrix. 

� Let             be a solution to             and write                      , 
where                ,                     . Then,                  , which we can 
rewrite as                         or                        . Note that for an 
arbitrary                    , if                        , then the resulting 
vector                      is a solution to             . 
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� In particular,               is a solution to             . We often refer to 
the basic solution               as a particular solution to 

� Note that                          is a solution to             . Any solution 
to             has the form 

for some 
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� Consider the system of simultaneous linear equations 
. Using a sequence of elementary row operations 

and reordering the variables if necessary, we transform the 
system              into the following canonical form: 

This can be represented in matrix notation as 
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� Definition 16.5: A system               is said to be in canonical 
form if among the     variables there are      variables with the 
property that each appears in only one equation, and its 
coefficient in that equation is unity. 

� A system is in canonical form if by some reordering of the 
equations and the variables it takes the form 
If a system of equations              is not in canonical form, we 
can transform the system into canonical form by a sequence of 
elementary row operations. The system in canonical form has 
the same solution as the original system and is called the 
canonical representation of the system with respect to the 
basis 
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� There are, in general, many canonical representations of a 
given system, depending on which columns of      we transform 
into the columns of      . We call the augmented matrix 

of the canonical representation of a given 
system the canonical augmented matrix of the system with 
respect to the basis               . Of course, there may be many 
canonical augmented matrices of a given system, depending on 
which columns of     are chosen as basic columns. 
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� The variables corresponding to basic columns in a canonical 
representation of a given system are the basic variables, 
whereas the other variables are the nonbasic variables. For 

, the variables                are the basic 
variables and the other variables are the nonbasic variables. 

� Note that in general the basic variables need not be the first 
variables. However, for convenience and without loss of 
generality, the basic variables are assumed so. 

� Having done so, the corresponding basic solution is 
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� Given a system of equations             , consider the associated 
canonical augmented matrix 

From the augments above we conclude that 

� In other words, the entries in the last column of the canonical 
augmented matrix are the coordinates of the vector    with 
respect to the basis 
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� The entries of all the other columns of the canonical augmented 
matrix have a similar interpretation. Specifically, the entries of 
the    th columns of the canonical augmented matrix, 
are the coordinates of      with respect to the basis 

� To see this, note that the first      columns of the augmented 
matrix form a basis (the standard basis). Every other vector in 
the augmented matrix can be expressed as a linear combination 
of these basis vectors by reading the coefficients down the 
corresponding column. 
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� Specifically, let                           be the    th column in the 
augmented matrix above. Clearly, since                form the 
standard basis, then for 

Let                      be the    th column of     , and               . Now, 
, where      is a nonsingular matrix that 

represents the elementary row operations needed to transform 
into                         . Therefore, for                 , we also 

have 
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� Suppose that we are given the canonical representation of a 
system             . If we replace a basic variable by a nonbasic
variable, what is the new canonical representation 
corresponding to the new set of basic variables? Specifically, 
suppose that we wish to replace the basis vector 
by the vector                      . Provided that the first      vectors 
with       replaced by       are linearly independent, these vectors 
constitute a basis and every vector can be expressed as a linear 
combination of the new basic columns. 
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� Let us now find the coordinates of the vectors               with 
respect to the new basis. These coordinates form the entries of 
the canonical augmented matrix of the system with respect to 
the new basis. In terms of the old basis, we can express       as 

� Note that the set of vectors                                            is 
linearly independent if and only if            . Solving the equation 
above for     , we get 
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� Recall that in terms of the old augmented matrix, any vector 
can be expressed as 

Combining the last two equations yields 

� Denoting the entries of the new augmented matrix by     , we 
obtain 

Therefore, the entries of the new canonical augmented matrix 
can be obtained from the entries of the old canonical 
augmented matrix via the formulas above. These equations are 
often called the pivot equations, and      , the pivot element. 
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� We refer to the operation on a given matrix by the formulas 
above as pivoting about the        -th element. Note that 
pivoting about the        th element results in a matrix whose   th
column has all zero entries, except the        th entry, which is 
unity. 

� The pivoting operation can be accomplished via a sequence of 
elementary row operations, as was done in the proof of 
Theorem 16.1. 
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� The essence of the simplex algorithm is to move from one 
basic feasible solution to another until an optimal basic feasible 
solution is found. 

� Suppose that we are given the basic feasible solution

or equivalently 

� In the simplex method we want to move from one basic 
feasible solution to another. This means that we want to change 
basic columns in such as way that the last column of the 
canonical augmented matrix remains nonnegative. 
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� We assume that every basic feasible solution of             , 
is a nondegenerate basic feasible solution. We make this 
assumption primarily for convenience – all arguments can be 
extended to include degeneracy. 
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� Let us start with the basic columns               , and assume that 
the corresponding basic solution                                     is 
feasible; that is, the entries                      , in the last column of 
the canonical augmented matrix are positive. 

� Suppose that we now decide to make the vector     ,           , a 
basic column. We first represent       in terms of the current 
basis as                                                 . Multiplying the above 
by           yields 

We combine this equation with                                     to get  
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� Note that  the vector 

where     appears in the    th position, is a solution to
If         , then we obtain the old basic feasible solution. As     is 
increased from zero, the   th component of the vector above 
increases. All other entries of this vector will increase or 
decrease linearly as     is increased, depending on whether the 
corresponding       is negative or positive. 
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� For small enough    , we have a feasible but nonbasic solution. 
If any of the components decreases as     increases, we choose 
to be the smallest value where one (or more) of the components 
vanishes. That is, 

� With this choice of     we have a new basic feasible solution, 
with the vector      replacing      , where     corresponds to the 
minimizing index                                           . So, we now have 
a new basis                                        . 

� As we can see,       was replaced by      in the new basis. We say 
that        enters the basis and       leaves the basis. 
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� If the minimum in                                  is achieved by more 
than a single index, then the new solution is degenerate and any 
of the zero components can be regarded as the component 
corresponding to the basic column that leaves the basis. 

� If none of the       are positive, then all components in the 
vector                                                                        increase (or 
remain constant) as     is increased, and no new basic feasible 
solution is obtained, no matter how large we make    . 

� In this case there are feasible solutions having arbitrarily large 
components, which means that the set     of feasible solutions is 
unbounded. 
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� So far, we have discussed how to change from one basis to 
another, while preserving feasibility of the corresponding basic 
solution assuming that we have already chosen a nonbasic
column to enter the basis. To complete our development of the 
simplex method, we need to consider two more issues. 

� The first issue concerns the choice of which nonbasic column 
should enter the basis. 

� The second issue is to find a stopping criterion, that is, a way to 
determine if a basic feasible solution is optimal or is not. 
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� Suppose that we have fond a basic feasible solution. The main 
idea of the simplex method is to move from one basic feasible 
solution (extreme point of the set     ) to another basic feasible 
solution at which the value of the objective function is smaller. 

� Because there is only a finite number of extreme points of the 
feasible set, the optimal point will be reached after a finite 
number of steps. 
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� We already know how to move from one extreme point of the 
set     to a neighboring one by updating the canonical 
augmented matrix. To see which neighboring solution we 
should move to and when to stop moving, consider the 
following basic feasible solution: 

together with the corresponding canonical augmented matrix, 
having an identity matrix appearing in the first      columns. 
The value of the objective function for any solution     is 

For our basic solution, the value of the objective function is 

where 
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� To see how the value of the objective function changes when 
we move from one basic feasible solution to another, suppose 
that we choose the    th column,                  , to enter the basis. 

� To update the canonical augmented matrix, let 
and                  . The new basic 

feasible solution is 
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� Note that the single     appears in the    th component, whereas 
the    th component is zero. Observe that we would have 
arrived at the basic feasible solution above simply by updating 
the canonical augmented matrix using the pivot equations from 
the previous section

where the    th column enters the basis and the    th column 
leaves [i.e., we pivot about the         th component]. The values 
of the basic variables are entries in the last column of the 
updated canonical augmented matrix. 
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� The cost for this new basic feasible solution is 

where                                  . Let                                   , then 
. Thus, if                                  , then the 

objective function value at the new basic feasible solution 
above is smaller than the objective function value at the 
original solution (i.e.,           ). Therefore, if                 , then the 
new basic feasible solution with       entering the basis has a 
lower objective function value. 
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� On the other hand, if the given basic feasible solution is such 
that for all                                         , then we can show that this 
solution is in fact an optimal solution. 

� To show this, recall that any solution to              can be 
represented as 

for some                                           . Using manipulations 
similar to the above, we obtain 

where                                                        . For a feasible 
solution we have                          . Therefore, if                  for 
all                       , then any feasible solution     will have 
objective function value         no smaller than 
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� Let            for                   and                   for 
we call     the   threduced cost coefficient or relative cost 
coefficient. Note that the reduced cost coefficients 
corresponding to basic variables are zero. 

� Theorem 16.2: A basic feasible solution is optimal if and only 
if the corresponding reduced cost coefficients are all 
nonnegative. 
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� 1. Form a canonical augmented matrix corresponding to an 
initial basic feasible solution

� 2. Calculate the reduced cost coefficients corresponding to the 
nonbasic variables

� 3. If            for all    , stop – the current basic feasible solution 
is optimal. 

� 4. Select a    such that 

� 5. If no           , stop – the problem is unbounded; else, calculate 
. (If more than one index    

minimizes          , we let     be the smallest such index. 

� 6. Update the canonical augmented matrix by pivoting about 
the         th element. 

� 7. Go to step 2. 
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� Theorem 16.3: Suppose that we have an LP problem in 
standard form that has an optimal feasible solution. If the 
simplex method applied to this problem terminates and the 
reduced cost coefficients in the last step are all nonnegative, 
then the resulting basic feasible solution is optimal. 
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� Consider the following linear program 

� Introducing slack variables, we transform the problem into 
standard form: 

� The starting canonical augmented matrix for this problem is 
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� Observe that the columns forming the identity matrix in the 
canonical augmented matrix above do not appear at the 
beginning. We could rearrange the augmented matrix so that 
the identity matrix would appear first. However, this is not 
essential from the computational point of view. 

� The starting basic feasible solution to the problem in standard 
form is                         . The columns                are basic, and 
they form the identity matrix. The basis matrix is 

� The value of the objective function corresponding to this basic 
feasible solution is         . We next compute the reduced cost 
coefficients corresponding to the nonbasic variables 
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� We would like now to move to an adjacent basic feasible 
solution for which the objective function value is lower. 
Naturally, if there is more than one such solution, it is desirable 
to move to the adjacent basic feasible solution with the lowest 
objective value. A common practice is to select the most 
negative value of      and then to bring the corresponding 
column into the basis. 

� In this example, we bring      into the basis; that is, we choose 
as the new basic column. We then compute

. We now update the canonical 
augmented matrix by pivoting about the (2,2)th entry using the 
pivot equations: 
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� The resulting updated canonical augmented matrix is 

Note that      entered the basis and      left the basis. The 
corresponding basic feasible solution is                         . We 
now compute the reduced cost coefficients for the nonbasic
columns

Because                   , the current solution is not optimal, and a 
lower objective function value can be obtained by bringing 
into the basis. 
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� Proceeding to update the canonical augmented matrix by 
pivoting about the (3,1)th element, we obtain

The corresponding basic feasible solution is                         . 
The reduced cost coefficients are 

Because no reduced cost coefficient is negative, the current 
basic feasible solution is optimal. The solution to the original 
problem is therefore                     , and the objective function 
value is 34. 
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� Consider a linear programming problem in standard form

Let the first      columns of     be the basic columns. The 
columns form a square             nonsingular matrix     . The 
nonbasic columns of      form an                     matrix     . We 
partition the cost vector correspondingly as 
Then, the original linear program can be represented as follows: 
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� If              , then the solution                                       is the 
basic feasible solution corresponding to the basis      . It is clear 
that for this to be a solution, we need                   ; that is, the 
basic feasible solution is 

� The corresponding objective function value is 

� If, on the other hand,             , then the solution
is not basic. In this case,       is given by 
and the corresponding objective function value is 
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� The elements of the vector          are the reduced cost 
coefficients corresponding to the nonbasic variables. 

� If             , then the basic feasible solution corresponding to the 
basis      is optimal. If, on the other hand, a component of 
is negative, then the value of the objective function can be 
reduced by increasing a corresponding components of 
that is, by changing the basis. 
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� We now use the foregoing observations to develop a matrix 
forms of the simplex method. To this end we first add the cost 
coefficient vector      to the bottom of the augmented matrix 

We refer to this matrix as the tableau of the given LP problem. 
The tableau contains all relevant information about the linear 
program. 

� Suppose that we apply elementary row operations to the 
tableau such that the top part of the tableau corresponding to 
the augmented matrix          is transformed into canonical form. 
This corresponds to premultiplying the tableau by the matrix
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� The result of this operation is 

� We now apply elementary row operations to the tableau above 
so that the entries of the last row corresponding to the basic 
columns become zero. Specifically, this corresponds to 
premultiplication of the tableau by the matrix

The result is 



Matrix Form of The Simplex Method

46

� We refer to the resulting tableau as the canonical tableau 
corresponding to the basis  . Note that the first      entries of 
the last column of the canonical tableau,          , are the values 
of the basic variables corresponding to the basis     . The entries 

in the last row are the reduced cost coefficients. 
The last element in the last row of the tableau,               , is the 
negative of the value of the objective function corresponding to 
the basic feasible solution. 
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� Given an LP problem, we can in general construct many 
different canonical tableaus, depending on which columns are 
basic. Suppose that we have a canonical tableau corresponding 
to the particular basis. Consider the task of computing the 
tableau corresponding to another basis that differs from the 
previous basis by a single vector. This can be accomplished by 
applying elementary row operations to the tableau in a similar 
fashion as discussed above. We refer to this operation as 
updating the canonical tableau. 
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� Note that updating of the tableau involves using exactly the 
same update equations as we used before in updating the 
canonical augmented matrix, namely, for 

where       and       are the        th entries of the original and 
updated canonical tableaus, respectively. 

� Working with the tableau is a convenient way of implementing 
the simplex algorithm, since updating the tableau immediately 
gives us the values of both the basic variables and the reduce 
cost coefficients. In addition, the value of the objective 
function can be found in the lower right-hand corner of the 
tableau. 
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� Consider the following linear programming problem 

� Transform the problem into standard form. Multiplying the 
objective function by -1, and introducing two nonnegative 
slack variables         , and construct the tableau for the problem 
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� Notice that this tableau is already in canonical form with 
respect to the basis            . Hence, the last row contains the 
reduced cost coefficients, and the rightmost column contains 
the values of the basic variables. Because               is the most 
negative reduced cost coefficient, we bring       into the basis. 
We then compute the ratios                      and                 . 
Because                          , we get 
We pivot about the (1,1)th element of the tableau to obtain
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� In the second tableau, only      is negative. Therefore,          (i.e., 
we bring        into the basis). Because 

we have          . We thus pivot about the (2,2)th element of the 
second tableau to obtain the third tableau

� Because the last row of the third tableau has no negative 
elements, we conclude that the basic feasible solution 
corresponding to the third tableau is optimal. Thus, 

,           ,            is the solution, and the objective value 
is -86/7. The solution to the original problem is 
and the corresponding objective value is 86/7
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� Degenerate basic feasible solutions may arise in the course of 
applying the simplex algorithm. In such as situation, the 
minimum ratio            is 0. Therefore, even though the basis 
changes after we pivot about the        th element, the basic 
feasible solution does not (and remains degenerate) 

� It is possible that if we start with a basis corresponding to a 
degenerate solution, several iterations of the simplex algorithm 
will involve the same degenerate solution, and eventually the 
original basis will occur. The entire process will then repeat 
indefinitely, leading to what is called cycling. 
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� Such a scenario, although rare in practice, is clearly undesirable. 
Fortunately, there is a simple rule for choosing     and     that 
eliminates the cycling problem 



Two-Phase Simplex Method

54

� The simplex method requires starting with a tableau for the 
problem in canonical form; that is, we need an initial basic 
feasible solution. A brute-force approach to finding a starting 
basic feasible solution is to choose      basic columns arbitrarily 
and transform the tableau for the problem into canonical form. 
If the rightmost column is positive, then we have a legitimate 
(initial) basic feasible solution. Otherwise, we would have to 
pick another candidate basis. Potentially, this brute-force 
procedure requires        tries, and is therefore not practical. 
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� Certain LP problems have obvious initial basic feasible 
solutions. For example, if we have constraints of the form 
and we add      slack variables              , then the constraints in 
standard form become 

where                        . The obvious initial basic feasible 
solution is 

and the basic variables are the slack variables. 
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� Suppose that we are given a linear program in standard form: 

In general, an initial basic feasible solution is not always 
apparent. We therefore need a systematic method for finding an 
initial basic feasible solution for general LP problems so that 
the simplex method can be initialized. 

� For this purpose, suppose that we are given an LP problem in 
standard form. Consider the following associated artificial 
problem: 
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� We call     the vector of artificial variables. Note that the 
artificial problem has an obvious initial basic feasible solution:

We can therefore solve this problem by the simplex method.  

� Proposition 16.1: The original LP problem has a basic feasible 
solution if and only if the associated artificial problem has an 
optimal feasible solution with objective function value zero. 
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� Assume that the original LP problem has a basic feasible 
solution. Suppose that the simplex method applied to the 
associated artificial problem has terminated with an objective 
function value of zero. Then, the solution to the artificial 
problem will have all                           . 

� Hence, assuming nondegeneracy, the basic variables are in the 
first     components; that is, none of the artificial variables are 
basic. Therefore, the first     components form a basic feasible 
solution to the original problem. 

� We can then use this basic feasible solution as the initial basic 
feasible solution for the original LP problem (after deleting the 
components corresponding to artificial variables). 
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� Thus, using artificial variables, we can attack a general linear 
programming problem by applying the two-phase simplex 
method. In phase I we introduce artificial variables and the 
artificial objective function and find a basic feasible solution. 
In phase II we use the basic feasible solution resulting from 
phase I to initialize the simplex algorithm to solve the original 
LP problem. 
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� Consider the following linear programming problem

First, we express the problem in standard form by introducing 
surplus variables: 

There is no obvious basic feasible solution that we can use to 
initialize the simplex method. Therefore, we use the two-phase 
method. 
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� Phase I. We introduce artificial variables                , and an 
artificial objective function            . We form the corresponding 
tableau for the problem 

To initialize the simplex procedure, we must update the last 
row of this tableau to transform it into canonical form. We 
obtain 
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� The basic feasible solution corresponding to this tableau is not 
optimal. Therefore, we proceed with the simplex method to 
obtain the next tableau: 

� We still have not yet reached an optimal basic feasible solution. 
Performing another iteration, we get 

Both of the artificial variables have been driven out of the basis, 
and the current basic feasible solution is optimal. 
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� Phase II. We start by deleting the columns corresponding to the 
artificial variables in the last tableau in phase I and revert back 
to the original objective function. We obtain 

� We transform the last row so that the zeros appear in the basis 
columns; that is, we transform the tableau above into canonical 
form 

All the reduced cost coefficients are nonnegative. Hence, the 
optimal solution is                          and the optimal cost is 54/7. 
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� Consider an LP problem in standard form with a matrix      of 
size            . Suppose that we use the simplex method to solve 
the problem. Experience suggests that if      is much smaller 
than    , then, in most instances, pivots will occur in only a 
small fraction of the columns of the matrix     . 

� The operation of pivoting involves updating all the columns of 
the tableau. However, if a particular column of      never enters 
any basis during the entire simplex procedure, then 
computations performed on this column are never used. 

� Therefore, if      is much smaller than    , the effort expended on 
performing operations on many of the columns of     may be 
wasted. The revised simplex method reduces computation. 
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� To be specific, suppose we are at a particular iteration in the 
simplex algorithm. Let      be the matrix composed of columns 
of      forming the current basis, and let      be the matrix 
composed of the remaining columns of      . 

� The sequence of elementary row operations on the tableau 
leading to this iteration (represented by matrices               ) 
corresponds to premultiplying by                        . 

� In particular, the vector of current values of basic variables is
. Observe that computation of the current basic feasible 

solution does not require computation of          . Instead, we 
only keep track of the basic variables and the revised tableau, 
which is the tableau 
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� Note that this tableau is only of size                    . To see how to 
update the revised tableau, suppose that we choose the column

to enter the basis. Let                    ,
and                                             (as the original simplex 
method). Then, to update the revised tableau, we form the 
augmented tableau                   , and pivot about the    th
element of the last column. 

� We claim that the first            columns of the resulting matrix 
comprise the revised tableau. To see this, write 
and let the matrix          represent the pivoting operation above 
(i.e.,                    , the     th column of the             identity matrix)
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� The matrix          is given by

� Then, the updated augmented tableau resulting from the above 
pivoting operation is                                  . Let           be the 
new basis. Then, we have                              . But notice that

, and the values of the basic variables 
corresponding to          are given by                        . Hence, the 
updated tableau is indeed 
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� 1. Form a revised tableau corresponding to an initial basic 
feasible solution  

� 2. Calculate the current reduced cost coefficients vector via 
, where

� 3. If            for all    , stop – the current basic feasible solution 
is optimal. 

� 4. Select a     such that            and compute 

� 5. If no            , stop – the problem is unbounded; else, 
compute 

� 6. Form the augmented revised tableau                   , and pivot 
about the    th element of the last column. Form the updated 
revised tableau by taking the first           columns of the 
resulting augmented revised tableau. 

� 7. Go to step 2. 
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� The reason for computing       in two steps indicated in Step 2 
is as follows. We first note that                               . To compute

, we can either do the multiplication in the order
or                  . The former involves two vector-matrix 
multiplications, whereas the latter involves a matrix-matrix 
multiplication followed by a vector-matrix multiplication. 
Clearly the former is more efficient. 

� As in the original simplex method, we can use the two-phase 
method to solve a given LP problem using the revised simple 
method. In particular, we use the revised tableau from the final 
step of phase I as the initial revised tableau in phase II. 
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� Consider solving the following LP problem using the revised 
simplex method: 

� First, we express the problem in standard form

There is no obvious basic feasible solution to this LP problem. 
Therefore, we use the two-phase method. 
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� Phase I. We introduce one artificial variable      and an artificial 
objective function. The tableau for the artificial problem is

We start with an initial basic feasible solution and 
corresponding       , as shown in the following revised tableau 

We compute 
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� Because      is the most negative reduced cost coefficient, we 
bring      into the basis. To do this, we first compute 
In this case,             . We get the augmented revised tableau

We then compute                                                 and pivot about 
the second element of the last column to get the updated 
revised tableau 

We next compute

All nonnegative. Hence, the solution to the artificial problem is [8/5, 0, 12/5, 0, 0]T. 
The initial basic feasible solution for phase II is therefore  [8/5, 0, 12/5, 0]T
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� Phase II. The tableau for the original problem (in standard form) 
is 

As the initial revised tableau for phase II, we take the final 
revised tableau from phase I. We then compute
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� We bring      into the basis, and compute                   to get 

In this case, we get         . We update this tableau by pivoting 
about the second element of the last column to get 

We compute 
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� We now bring       into the basis

We update the tableau to obtain

We compute 

The reduced cost coefficient are all positive. Hence, [0, 4, 0, 4]T is 
optimal. The optimal solution to the original problem is [0,4]T


